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Comments on “Energy and Power Orthogonality in
Isotropic, Discretely Inhomogeneous Waveguides”

Paul R. Mclsaac, Member, IEEE

In a recent letter,! Manring and Asmussen discuss orthogonality
relations for modes in cylindrical waveguides containing isotropic
media whose permittivity may be discretely inhomogeneous. They
develop these relations in terms of the TE and TM portions of the
transverse electric and magnetic fields. As an example, they discuss
the TE and TM modes of certain inhomogeneously-filled waveguides
(for example, the axisymmetric modes in a coaxially-loaded circular
cylindrical waveguide). The authors show that for the transverse
electric fields of the TM modes:

//éEgM-E};Mds =0, i#J (1a)
while for the electric fields of the TE modes:
//iE;{E-EtTJEds:O. i# (1b)
il

These are equations (14) and (15) of [1]; analogous equations for the
transverse magnetic fields are also given in [1].

The authors then state: “On the basis of these equations, the cavity
orthogonality equations given by Harrington are not valid in general
[1, p. 432]. The equation given for the electric field is valid only for
TM modes while the equation given for the magnetic field is valid
only for TE modes.” The cavity orthogonality relations referred to
are equations (8-163) and (8-164) in [1]. These state that the modes
for a closed cavity of arbitrary shape with discretely inhomogeneous
media satisfy the relations:

///sE,-Ejdrzo, ////LHI.H]*dT=O, i@

These latter equations are general and are valid, in particular, for
the example introduced by the authors. The apparent disagreement
between (1b) and (2) for the electric fields for TE modes is not a real
disagreement. Each of these equations, properly applied, is valid. The
orthogonality relations of (1) are for waveguides; these hold for two
waveguide modes at the same frequency which have different axial
phase constants (kz, # k., ). The cavity mode orthogonality relations
of (2) hold for the fields of two distinct cavity modes with (usually)
different resonant frequencies.

For the type of cavity under discussion (a section of waveguide
with end walls, Fig. 1) each cavity mode will have an integer number
of half wavelengths between the end walls. The volume integrals in
(2) include a radial integration. an azimuthal integration (which is
trivial since the fields are axisymmetric) and an axial integration. In
general, the resonant frequencies of the two modes will differ. If the
two modes have different numbers of half wavelengths between the
end walls, then the axial integration will yield zero (regardless of
the radial variation of the fields). If the two modes have the same
number of half wavelengths between the end walls, then the radial
integration will yield zero. In each case, (2) is satisfied. In those cases
where the resonant frequencies of the two cavity modes differ, (1b)
is not relevant.
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Fig. 1. Cross-section of a circular cylindrical cavity coaxially-loaded with
isotropic, discretely inhomogeneous, media.

One can imagine a structure of this type whose inhomogeneity is
such that two TE waveguide modes (phase constant k., and %.,,
together with a cavity length L, can be found to give two distinct
cavity modes with the same resonant frequency. Then, (1b) applies
(based on k.., # k.,), and (2) applies (since if k., # k.,, the
axial integration will yield zero). Analogous arguments can be made
concerning the orthogonality relations for the magnetic fields of the
TM modes.

To summarize, the cavity mode orthogonality relations given by
Harrington [1] are completely general (for the media assumptions
made) and, in particular, apply to the special cases discussed by the
authors.

Authors’ Reply’

E. B. Manring and J. Asmussen, Jr., Member, IEEE

In Dr. Mclssac’s comments on our letter,! he points out that no
contradiction exists between the waveguide orthogonality equations
we derived and the cavity orthogonality equations given by [1]. Upon
closer inspection, we concur that the apparent contradiction between
(15) in our letter' and (8-163) of [1] is only apparent.

When performing the cross-sectional integration for two different

TE modes, i.e.,
//E?E-E;fEds, (1)

there arises a factor of (k?, — k7,) in the denominator, where the
transverse wavenumber k. is defined by (7) in our letter.! In a
waveguide where k, = k; within each homogeneous region, this
quantity is equal to (k> ,—kZ,). Since k, is the same in every region,
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it is independent of cross-sectional coordinates and may be factored  denominator. Multiplying the integrand by e for the cavity case then

away. has the same effect as dividing the integrand by p for the waveguide
In a lossless cavity, the axial wavenumbers of the two modes case.
must be equal in order that the axial integration be nonzero. When We would like to express our appreciation to Dr. Mclssac for
k.. = k.,, the quantity (k% — kZ;) is given by clarifying this point.
B2 — k2, = k2 — B = ep(w? — w?). ) REFERENCES
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